Day 04

Rotations

Properties of Rotation Matrices

- $R^{T}=R^{-1}$
the columns of R are mutually orthogonal each column of R is a unit vector $\operatorname{det} R=1$ (the determinant is equal to 1)

Rotations in 3D

$$
\begin{aligned}
& R_{1}^{0}=\left[\begin{array}{lll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\
x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0}
\end{array}\right]
\end{aligned}
$$

Rotation About z-axis

Rotation About x-axis

Rotation About y-axis

Relative Orientation Example

Successive Rotations in Moving Frames

1. Suppose you perform a rotation in frame $\{0\}$ to obtain $\{I\}$.
2. Then you perform a rotation in frame $\{1\}$ to obtain $\{2\}$.

What is the orientation of $\{2\}$ relative to $\{0\}$?

$$
\vec{y}_{0}=\hat{y}_{1}
$$

$$
R_{1}^{0}=R_{y, \phi}
$$

$R_{2}^{0}=$?

Successive Rotations in a Fixed Frame

1. Suppose you perform a rotation in frame $\{0\}$ to obtain $\{I\}$.
2. Then you rotate $\{1\}$ in frame $\{0\}$ to obtain $\{2\}$.

What is the orientation of $\{2\}$ relative to $\{0\}$?

Composition of Rotations

Given a fixed frame $\{0\}$ and a current frame $\{I\}$ and R_{1}^{0} if $\{2\}$ is obtained by a rotation R in the current frame $\{I\}$ then use postmulitplication to obtain:

$$
R=R_{2}^{1} \quad \text { and } \quad R_{2}^{0}=R_{1}^{0} R_{2}^{1}
$$

2. Given a fixed frame $\{0\}$ and a frame $\{I\}$ and if $\{2\}$ is obtained by a rotation R in the fixed frame $\{0\}$ then use premultiplication to obtain:

$$
R_{2}^{0}=R R_{1}^{0}
$$

Rotation About a Unit Axis

$$
\begin{aligned}
& c_{\theta}=\cos \theta \\
& s_{\theta}=\sin \theta \\
& v_{\theta}=1-\cos \theta
\end{aligned}
$$

$$
R_{k, \theta}=\left[\begin{array}{ccc}
k_{x}^{2} v_{\theta}+c_{\theta} & k_{x} k_{y} v_{\theta}-k_{z} s_{\theta} & k_{x} k_{z} v_{\theta}+k_{y} s_{\theta} \\
k_{x} k_{y} v_{\theta}+k_{z} s_{\theta} & k_{y}^{2} v_{\theta}+c_{\theta} & k_{y} k_{z} v_{\theta}-k_{x} s_{\theta} \\
k_{x} k_{z} v_{\theta}-k_{y} s_{\theta} & k_{y} k_{z} v_{\theta}+k_{x} s_{\theta} & k_{z}^{2} v_{\theta}+c_{\theta}
\end{array}\right]
$$

