Day 04

Rotations

Properties of Rotation Matrices

- $R^T = R^{-1}$
- \blacktriangleright the columns of R are mutually orthogonal
- each column of R is a unit vector
- $ightharpoonup \det R = 1$ (the determinant is equal to 1)

Rotations in 3D

Rotation About z-axis

Rotation About x-axis

Rotation About y-axis

Relative Orientation Example

Successive Rotations in Moving Frames

- 1. Suppose you perform a rotation in frame {0} to obtain {1}.
- 2. Then you perform a rotation in frame {1} to obtain {2}.

What is the orientation of $\{2\}$ relative to $\{0\}$?

Successive Rotations in a Fixed Frame

- 1. Suppose you perform a rotation in frame {0} to obtain {1}.
- 2. Then you rotate {1} in frame {0} to obtain {2}.

What is the orientation of $\{2\}$ relative to $\{0\}$?

Composition of Rotations

- I. Given a fixed frame $\{{f 0}\}$ and a current frame $\{{f I}\}$ and R_1^0
 - if $\{2\}$ is obtained by a rotation R in the current frame $\{1\}$ then use postmulitplication to obtain:

$$R = R_{2}^{1}$$
 and $R_{2}^{0} = R_{1}^{0}R_{2}^{1}$

- 2. Given a fixed frame {0} and a frame {1} and
 - if $\{2\}$ is obtained by a rotation R in the fixed frame $\{0\}$ then use premultiplication to obtain:

$$R_{2}^{0} = RR_{1}^{0}$$

Rotation About a Unit Axis

$$c_{\theta} = \cos \theta$$
$$s_{\theta} = \sin \theta$$
$$v_{\theta} = 1 - \cos \theta$$

$$R_{k,\theta} = \begin{bmatrix} k_{x}^{2}v_{\theta} + c_{\theta} & k_{x}k_{y}v_{\theta} - k_{z}s_{\theta} & k_{x}k_{z}v_{\theta} + k_{y}s_{\theta} \\ k_{x}k_{y}v_{\theta} + k_{z}s_{\theta} & k_{y}^{2}v_{\theta} + c_{\theta} & k_{y}k_{z}v_{\theta} - k_{x}s_{\theta} \\ k_{x}k_{z}v_{\theta} - k_{y}s_{\theta} & k_{y}k_{z}v_{\theta} + k_{x}s_{\theta} & k_{z}^{2}v_{\theta} + c_{\theta} \end{bmatrix}$$